

The book was found

Georg Cantor: His Mathematics And Philosophy Of The Infinite

Synopsis

One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important studythe most thorough yet writtenof the philosopher and mathematician who was once called a "corrupter of youth" for an innovation that is now a vital component of elementary school curricula. Set theory has been widely adopted in mathematics and philosophy, but the controversy surrounding it at the turn of the century remains of great interest. Cantor's own faith in his theory was partly theological. His religious beliefs led him to expect paradoxes in any concept of the infinite, and he always retained his belief in the utter veracity of transfinite set theory. Later in his life, he was troubled by recurring attacks of severe depression. Dauben shows that these played an integral part in his understanding and defense of set theory.

Book Information

Paperback: 404 pages

Publisher: Princeton University Press; n Second printing edition (September 20, 1990)

Language: English

ISBN-10: 0691024472

ISBN-13: 978-0691024479

Product Dimensions: 6.1 x 1 x 9.2 inches

Shipping Weight: 1.1 pounds (View shipping rates and policies)

Average Customer Review: 4.8 out of 5 stars 5 customer reviews

Best Sellers Rank: #757,208 in Books (See Top 100 in Books) #83 in Books > Science & Math > Mathematics > Pure Mathematics > Set Theory #4058 in Books > Science & Math > History & Philosophy #8482 in Books > Textbooks > Science & Mathematics > Mathematics

Customer Reviews

Joseph Warren Dauben, Winner of the 2012 Albert Leon Whiteman Memorial Prize, American Mathematical Society"Historians of mathematics can only be grateful for the effort Professor Dauben has expended to create the synthesis of Cantor scholarship found in this book. But the book can, and I hope will, be read with profit by a far more extensive audience. Any student, mathematician, philosopher, theologian, or general historian with an interest in Georg Cantor and the wondrous revolution in mathematical and philosophical thought that his work did so much to precipitate will find this book of considerable interest."--Thomas Hawkins, Historia Mathematica

One of the greatest revolutions in mathematics occurred when Georg Cantor promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important study--the most thorough yet written--of the philosopher and mathematician who was once called a 'corrupter of youth' for an innovation that is now a vital component of elementary school curricula.

Interesting read.

This is the definitive book about George Cantor, the brilliant mathematician whose work includes the groundbreaking development of both set theory and transfinite numbers. Interestingly, the author's preface says this is not a biography of Cantor, though it does include personal information, especially as it relates to Cantor's intellectual development and emotional issues. Rather, it's a thorough and rigorous exposition of his mathematical and philosophical ideas. Dauben says, "... this book represents a study of the pulse, metabolism, even in part the psychodynamics of an intellectual process: the emergence of a new mathematical theory". But, a few warnings. While both the and jacket blurb claims this is for the "general reader", it is not. It is most definitely NOT a popularization, and I don't think the publisher tries to make that clear. It is a scholarly tract, an extension of Dauben's Harvard doctoral dissertation, and it seems he has not watered it down much. It is highly technical, with many equations, and is primarily written for academicians who are fluent in higher mathematics (clearly, not a large potential audience for the book!). Consistent with such a scholarly publication, it includes excellent index, bibliography, and notes sections, with many entries being technical, from obscure journals, and/or in foreign languages. I found that my three semesters of college calculus (though no set theory) were inadequate preparation to follow many of the mathematical arguments. If you have an undergraduate or higher degree in pure mathematics, you should have no trouble. Dauben also uses a fair amount of German, and a little French and Latin, all without translation -- you're expected to know these things. It's possible to get a sense of Cantor's accomplishments by simply skipping over the math and foreign languages that are beyond you, although the more prepared you are in these areas, the more you'll get out of the book. However, if you're interested in the history of math but want to avoid the naked technicalities, I instead recommend William Dunham's "Journey Through Genius", which uses nothing beyond high-school mathematics. Dunham's book has twelve readable chapters on significant mathematical discoveries, and as a measure of Cantor's importance, he, like Euclid and Euler, gets two chapters while Archimedes, Newton, and the rest get just one.

I've just been rereading parts of this book in order to get clearer about how it was possible for Cantor to work for many years, and always with great rigor, on the ordering of the transfinite ordinals and yet still continue to reject, quite dogmatically in general, the existence of infinitesimals, or "granulars" as they are sometimes called, and to do so despite numerous explications and/or personal letters from Thomae, du Bois-Reymond, Stolz, Veronese and Vivendi [not to mention Peirce and Weyl, who had no direct contact with Cantor] all of which argued -- in my view quite correctly -- that admitting the legitimacy of the transfinite ordinals immediately implied the existence of the infinitesimals as well. Dauben does an admirable job of showing why and how Cantor went about trying to exclude what he calls the "Chorela-Bacillus of infinitesimals" with which he believed -- wrongly as it turns out, since Leibniz and several others had already developed Real Analysis and the Calculus on the basis of such quantities -- Thomae had first "infected" mathematics. Obviously this is one of Cantor's most egregious errors, something which is easy to see from our perspective today, especially after Abraham Robinson's rigorous theorization of Non-Standard Analysis, and which ought -- I believe -- to have been fairly obvious to Cantor at the time, especially since so many other leading mathematicians of his day were lining up against him on the issue and providing serious arguments to counter his own dogmatic "immunization strategies" and the subsequent digging in of his heels. At any rate, Dauben explains all of this infinitesimal denial very clearly in this biographically organized presentation of Cantor's seminal mathematical [and, albeit to a lesser extent, philosophical] insights and theorizations. All in all I would certainly give this work the full 5 stars of praise!

I found this was an excellent memoir of Cantor and his ideas. It goes far more deeply into the mathematics than other discussions of Cantor, and makes you want to read more about both set theory and about the development of topology in the early twentieth century. It also attempts to place Cantor's philosophy and mathematical ideas into a psychological context as well, which is probably appropriate - even essential - in the case of Cantor. Though, in twenty years, this aspect of the book may not wear well. All in all, it is a refreshingly strong and insightful treatment of one of the major historical figures in nineteenth century mathematics.

[Download to continue reading...](#)

Georg Cantor: His Mathematics and Philosophy of the Infinite The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise (Dover Books on Mathematics) Manifesto for Philosophy: Followed by Two Essays: "the (Re)Turn of Philosophy Itself" and "Definition of Philosophy" (SUNY Series, Intersections, Philosophy and Critical Theory) Understanding Infinity: The

Mathematics of Infinite Processes (Dover Books on Mathematics) Satan, Cantor and Infinity: Mind-Boggling Puzzles (Dover Recreational Math) Songs and Prayers from Taize: Accompaniment Edition for Cantor & Instruments Georg Jensen Jewelry (Published in Association with the Bard Graduate Centre for Studies in the Decorative Arts, Design and Culture) Mira calligraphiae monumenta: A Sixteenth-century Calligraphic Manuscript inscribed by Georg Bocskay and Illuminated by Joris Hoefnagel Sea Cows, Shamans, and Scurvy: Alaska's First Naturalist: Georg Wilhelm Steller Georg Jensen: Reflections Goltermann Georg Concerto No 4 In G Major Op. 65 Cello Piano - by Julius Klengel Leonard Rose Telemann for Mandolin: 72 Compositions from the Works of Georg Philipp Telemann Arranged for Solo Mandolin Infinity and the Mind: The Science and Philosophy of the Infinite (Princeton Science Library) Theory and Application of Infinite Series (Dover Books on Mathematics) Infinite Sequences and Series (Dover Books on Mathematics) Exploring the Infinite: An Introduction to Proof and Analysis (Textbooks in Mathematics) The King of Infinite Space: Euclid and His Elements The Art of the Infinite: The Pleasures of Mathematics Potential Theory on Infinite Networks (Lecture Notes in Mathematics) Infinite Series (Dover Books on Mathematics)

[Contact Us](#)

[DMCA](#)

[Privacy](#)

[FAQ & Help](#)